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Let p v ~ 1 /2  be the open-bond probability in Broadbent and Hammersley 's  
percolation model on the square lattice. Let W X be the cluster of sites connected 
to x by open paths, and let {7(n)} be any sequence of circuits with interiors 
I'~(n)l-~ m.  It is shown that for certain sequences of functions {f~}, S~ = 
~x~(n)fn(Wx) converges in distribution to the standard normal law when 
properly normalized. This result answers a problem posed by Kunz  and Souil- 
lard, proving that the number  Sn of sites inside y(n) which are connected by 
open paths to ~(n) is approximately normal for large circuits 7(n). 
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1. INTRODUCTION 

The percolation model of Broadbent and Hammersley (2) has received 
considerable recent attention in both the mathematics and physics litera- 
ture (see Refs. 5-8, 10, 14-16). In this paper we will verify a conjecture of 
Kunz and Souillard (Section 6 in Ref. 10) and prove a general central limit 
theorem. 

We will consider only the bond percolation model on the square 
lattice, although some of our methods should work for other models. Let E 2 
be the set of points in the plane with integer coefficients, and for x, y ~ 7/2, 
x = (x  I , x2) ,y  = (Yl ,  Y2), write d(x ,  y) = Ix 1 - Yll + Ix2 - Y2I. The points of 
7/2 will be called sites, and the line segments joining sites x and y with 
d(x ,  y ) =  1 will be called bonds. The origin is the site (0, 0), denoted by 0. 
Each bond is declared open with probability p or closed with probability 
1 - p  independently of all other bonds. We will assume throughout that 
0 < p < l .  
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A path from x to y is an alternating sequence of sites and bonds of the 
form Xo,Vl ,Xl ,V 2 . . . . .  v , ,xn,  where x o = x, x ,  = y ,  d(xi ,xi+ 0 = 1, and v i 
is the bond joining x~ 1 and x~. A circuit 7 is a path Xo,Vl,Xl . . . . .  v , , x ,  
such that X o , X ~ , . . . ,  x,_~ are distinct and x 0 =  x,. Thus a circuit is a 
special type of a simple closed curve. Let ,~ be the set of sites strictly inside 
7 and let ~ ,  be the inside boundary, ~ ,  = ( x  ~ 71 there exists y ~ 7 with 
d(x ,  y)  = 1 ). The notation x ~ y  means there is a path from x to y with all 
bonds open, and for any A C 7/2, x ~ A  means x ~ y  for some y ~ A. The 
number of sites in A is denoted IA I. 

The open cluster W~ at x is defined to be the set of all sites y such that 
x ~ y .  If the four bonds of x are all closed, W~ is empty. For any A c 7/2 let 
W A = U ~eA Wx" The usual interpretation of W~ is that it represents the set 
of sites which are "wetted" by placing a fluid source at x and allowing fluid 
to flow only along open bonds. It is now known (see Ref. 8) that P(I W~l 
= m) is zero fo rp  < 1/2 and strictly positive fo rp  > 1/2. 

Given a circuit 7 we can alter our viewpoint by putting fluid sources at 
each site of 7 and asking how many sites inside 7 are "wetted." In Ref. 10 
Kunz and Souillard conjectured that the number of such sites should be 
approximately normal for large 7. We verify this conjecture with the 
following theorem. 

Theorem 1. Assume p ~ l / 2  and define ~y(x)= l(w, nv~o) and 
Sv = ~ x~ 4~ (x ) .  Then there are finite, nonzero constants ct(p),  c2(p) such 
that for all circuits 7, 

and 

p < 1/2 implies 

p >  1/2 implies 

c,(p)l  l Ear, VarSv -<< c2(p)la l (1.1) 

c,(p)l~'l < E S  v, VarS v < c2(p)l l (1.2) 

Fur thermore if {7(n)} is any sequence of circuits with ]~,(n)[~ oe  then 
E S . ( . ) ) / ( V a r S . ( n ) )  1 / 2 _ _  converges in distribution to the standard 

normal law. 

The estimates on E S  v and VarSv indicate an essential qualitative 
difference in the behavior of Sv for p above or below the critical value of 
1/2. By making "regularity" assumptions on the circuits {7(n)} it is 
possible to obtain more precise results. In particular, if 7, is the boundary 
of the square [0, n] x [0, n], then 

{ ESr(n) = 4(n - 1)X + O(lnn)  
p < 1/2 implies VarSy(n) = 4(n - I)A 1 + O(lnn)  (1.3) 
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and 

p > 1/2 implies. 
"ESv(,) = (n - 1)2p~ + 4(n - 1)X + O(lnn)  

VarSv(,) = (n - 1)2A2 + O ( n l n n )  
(1.4) 

where the constants ~, p~,  A l, A 2 are defined in Section 5. 
A more general central limit theorem which applies to sums of func- 

tions of the open clusters can be formulated as follows. A function f is said 
to be increasing (decreasing) on the subsets of 2 2 if f (Wl)  < f(W2) (~>) 
whenever W~ c W2. Let ~ be the set of (finite) real valued functions f 
defined on the connected subsets of ;Y2 which are either increasing or 
decreasing,-and are constant on infinite sets [i.e., f ( W l ) = f ( W 2 )  if I Wll 

= IW l = 

Theorem 2. Assume p v ~ 1/2 and {,/(n)} is a sequence of circuits 
with I , )(n)l~ oo. Assume {f,} is a sequence of functions satisfying the 

f ,  ~ 0y for each n 

following: 

sup max EIL(w~)I*= ck < ~ for each k = l, 2 . . . .  
x �9 ,~(~) 

inf~ rain V a r [ f ( W ~ ) ] = o  2 > 0  x � 9  ~(~) L J n ~  

(1.5) 

(1.6) 

(1.7) 

If Sv(,) = E x c ~(,)f~ (Wx), then (Sv(n) - ESv(~) )//(Var Sy(n) )1/2 converges in 
distribution to the standard normal law. 

Several remarks are in order here. It will be shown in Section 4 that 
Theorem 2 covers thep  > 1//2 case of Theorem 1, but not thep  < 1//2 case. 
The problem is condition (1.7). It will be seen in Section 2 [see (2.1)] that 
(1.6) is not overly restrictive. For the case p > 1//2, the number S~ = 
~ x c ~ ( x )  of sites inside ,/ which are joined to ~, by open paths may be 
divided into two components 

s =g+ s( 
where 

sr 2 = 2 
xE~ x ~  

and f ly(x)= l(iv<~l<~,v~nv=~o ) . The functions fn(W 0 = l~lw~l=+~ ) satisfy 
the hypotheses of Theorem 2 for any sequence {7(n)}, and we obtain a 
slightly more general version of a resuit of Grimmett  (see Ref. 6), which 
is a central limit theorem for the number of sites inside 7(n) which are 
"connected to infinity." The second component S F of S v is also asymptoti- 
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cally normally distributed; in fact it follows easily from Lemma 1 and the 
proof of (1.1) that there exist constants c'l(p) and c'2(p) such that 

c'~(p)lO~l ~ EsF,  VarS  r < c;(p)10~'l 

and that (S~,) - ES~n))/(Var svF(n)) 1/2 converges to the standard normal 
law. 

It is also possible to consider f~ (Wx) = I Wx,n I - 11 (( w,.,, I>O) where W~,n 
is the set of sites in ~,(n)joined to x by open paths within ,)(n): Although f ,  
is not monotone, it is still possible to prove asymptotic normality for 
~xE4(n) f ,(Wx),  the number of open clusters in ~,(n). 

It should be noted here that Theorem 2 above is similar to Theorem 
(3.1) in Neaderhouser's paper, (~3) except that strict regularity requirements 
for the circuits 7(n) are imposed there. Although the approach used in Ref. 
13 may possibly be modified to allow arbitrary circuits ,/(n), we feel that 
Malygev's method of Ref. 12 using the method of moments and semi- 
invariants is simpler, and works easily for both Theorems 1 and 2. Malygev's 
technique is also used in Refs. 1 and 9. 

2. THE BASIC INEQUALITIES 

Lemrna 1. If p =/= l / 2  then there are finite nonzero constants a and/3 
depending only on p such that 

P(IWol < oo andthere  existsy E Wo, d(O, y ) >1 m) < ae -~m 

Proof. For p < 1/2 W o is finite with probability 1, and part of 
Theorem 2 in Ref. 8 states that there exists some /31(p), 0 </31(p) < oo, 
such that P (there exists y E W o, d(O,y)/> m) < 2e -/3'(p)m. For p > 1/2 
we turn to the dual-lattice technique, explained in Ref. 15. If I Wo[ < oo and 
there exists y E W 0 with d(0, y) ~> m, then there must exist some circuit of 
closed bonds in the duaMattice containing W o (and hence the origin) with 
length at least m. Such a circuit must contain at least one of the duaMattice 
sites x~ = (k + 1/2, 1/2),k/> 0. Therefore, P([Wol < oo and there exists 
y ~  W0, d(0, y)>/ m ) <  

~'~ P(there is a path in the dual-lattice containing x~' 
k = O  

with length >/max(m, k)) 

< 2e-B,( l -p )m + ~, 2e -/~L(1-p)k 
k = 0  k = m + l  

~. o/e - 13m 

for an appropriate choice of ~x,/3 depending only on p. I 
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Corollary.  I f / ,  4 : I / 2  and A is a finite subset of 7/2, then P(]WA[ < 
oo and there existsy E W A with d(x ,y)  >>1 m for all x E A) <<. a[Aie - ~  

Throughout the rest of the paper a and fl will be the constants defined 
in Lemma 1. It follows from Lemma 1 that condition (1.6) of Theorem 2 is 
satisfied for a sequence {fn) if there is a function g such that I g(oo)l < or, 
suPnIf~(Wx) I ~< g([ W~[) and 

g(n)kexp(- f l ln  '/2) < oo for all k --- 1,2 . . . .  (2.1) 
n = l  

RemarR. Since H. Kesten has recently shown (personal communica- 
tion) that P(IWo] /> n) ~< a 'e  -~'n for/)  < 1/2 where a ' , /3 '  depend only on 
/), (2.1) can be improved accordingly. 

We can now state and prove a result which will show that fn(Wx) is 
more or less "independent" of fn(Wy) if x and y are "far apart." Let 
d(x,A) ~- min{d(x,  y)[ y E A ) and d(A, B) = min{d(x,  B)[x ~ A ). 

Lemma 2. Assume/)  v ~ 1/2 and (y , )  is a sequence of circuits with 
[~(n)[ ~ oo. Let {fn) be a sequence of functions which satisfy conditions 
(1.5) and (1.6) and the additional requirement that f~(Wx)= 0 if I W~[ = 
+ oo. For finite sets A c 7/2 let 0n(A) = IIx~Afn(W~). Then for all finite sets 
A, B C 7/2 there exists a finite constant c 3 depending only on/), [A [, ]B I, and 
the numbers C k in (1.6) such that for all n, 

IEp.(A)On(B ) - Epn(A)Epn(B )1 <<" e3e -/~a(A,B>/4 

Proof. We first observe that repeated application of H61der's in- 
equality to EJon(A)I and condition (1.6) show that E]p,(A)[ is bounded 
above by a quantity which depends only on/),  ]A ], and the numbers C k in 
(1.6). Let m = d(A,B) and let ~A = {d(x,A) <~ m/2  for all x ~ WA) and 
~B --- {d(x,B) <~ m/2  for all x E WB). Then f~A and ~2 B are independent, 
and writing E(X; G) for E ( X l c ) ,  E(pn(A)Pn(B); ~2 A n fiB) = E(on(A); ~2~) 
E(on(B); ~s). Thus 

[Epn(A)on( B ) - Epn(A)Ep,( B )[ < IE(pn(A)p.( B ); a3 v ~c )f 

+ IE(on(A);  aA)E(pn(B); a~)  - Ep.(A)Epn(B)I 

<~ E(Ipn(A)pn(B)l; ~c A L) f~c ) + Elon(A)IE(Ipn(B )I; ~B) 

+ EIon(B )]E(]pn(A)I; ~CA) 

Since pn(A) = 0 if IWAI = +oo and p~,(B) = 0 if IWB] = +oo,  we can let 
~A = ~2] (1 (IW~[ < ce) and fib = f ~  (1 (]WB[ < oo) and bound the terms 
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above by 

E(Io.(A)p~(B )l; fiA) + E(Ipn(A)pn(B )1; fi~) + EIo~(A)IE(Io.(B )1; fi~) 

+ EIo~(B )IE(Io.(A)[; (~) 
Replacing OA and ~ with their indicator functions and using H61der's 
inequality we have 

I Eo,( A )o~( B ) -- Eo,( A )Eo,( B )l 

<~ [ Eo~(A)g(B)] ' /2[(E lfi~)'/2 + (E lfi.) '/2 ] 

1- -~1/2 + EIo.(A)I[Eo~(B)]'/z( E a.) 

+ elo., (B)1[ Ep2( A ) ]1/2(E lfi~),/2 

<~ c3 e Bin~4 

using the Corollary to Lemma 1 to estimate E lfi. and E lfi., where c 3 
depends onp,  I11, IBI, and the C k in (1.6). �9 

3. PROOF OF THEOREM 2 

We start by pointing out that it suffices to consider sequences {fn} 
such that f . (Wx)=O if IWxl = + m .  This is because any fn E ~  can be 
written as f .  -- d~ + g., where d. = f~(7/2) and g.(Wx) = [f~(Wx) - d.] 
l{iw~l<~). Next we observe that the FKG inequalities (see Refs. 3, 4, and 
16) imply that Ef.(Wx)f.(Wy) - Efn(Wx)Efn(Wy ) >1 0, so that 

VarSv(.) = ~] 2 E f . ( W x ) f . ( W y ) -  Ef.(W~)Ef.(Wv) 
x E y ( n )  y ~ y ( n )  

>1 ~ Var f~(Wx ) 
xe ~(n) 

by condition (1.7). 
It is now necessary to recall certain facts about semi-invariants and 

Ursell functions, which can be found in Refs. 9, 11, and 12. The kth 
semi-invariant of a random variable X will be written v~(X); it is the 
coefficient of t k in the expansion of in Ee *x, and can be expressed in terms 
of the moments of X by 

k 
k! 1 ~ !r2! EX~,EX . . . . .  EX~,,, t 'k(X)= ~ ( - - 1 ) m - l m  r, " . . rmr  

m = 1 r l , r 2 ,  . . . , r m >/ 1 

r l + r 2 +  - . -  + r m = k  

(3.1) 
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The Ursell function r ( X j ,  X 2 . . . . .  X n )  of n variables is 

v(X 1 . . . . .  X , ) - -  ~ - ~ ( - 1 ) s - ' ( s - 1 ) !  E E(Xi]Xi~' ' ' )  
s=: g : I:l=s 

X E ( X i ~ X i ~ . . .  ) . . .  E ( X , i , X , { . . .  ) (3.2) 

�9 1 .1 where the second sum is over all partitions ~ = {{/z,t2 . . . .  }, {i~, 
i~, . . .  } ' '  �9 {i~,i~ . . . .  }} of {1,2 . . . . .  n} consisting of s members. It is 
known (see Refs. 9, 11, 12) that the semi-invariants of a sum can be written 
as  

. . . .  (3.3) 
i i l = l  ik=l 

Since the moments are determined by the semi-invariants, to prove Z~ 
= (Sv(~) - ES~(~) ) / (VarSv ( , ) )  t/2 converges in distribution to the standard 
normal law it suffices to prove u k ( Z ~ ) ~ O  if k=/=2 and pz(Zn)--~l (the 
semi-invariants of the standard normal law). Note that vl(Z~) = EZ~ = 0 
and v2(Z,) = VarZ,  = 1. 

For any finite set A C 7/2 define Gk,m(A ) by 

Gk,m(A ) = { ( x , , x  2 . . . . .  xk) teach x i ~ A and the maximum over 

nontrivial partitions ( ~r', Tr" } of { 1,2 . . . . .  k) of 

min d ( x  i, xy) is equal to m 1 (3.4) 
i E ~ ' , j E w "  ) 

A counting argument (see Ref. 9) shows that 

IGk,,,(A)[ < Ia](2m + 1)2~(k!) 2 (3.5) 

The last formula needed (see Refs. 9, l l, 12) expresses the Ursell functions 
in terms of moments. Let (qr',~r'} be a nontrivial partition of { 1, 2 . . . . .  k}, 
fix ( x l , x  2 . . . . .  xk) ~ Gk, m, and let p,(~r)= I~ ic r  for any subset 
~r C {1, 2 . . . . .  k}. Then 

= E -+ 

571 C qr~,q72 C ~ "  

- Ep,(Tr l )Ep, (~r2)]Eo~(~r3)Ep, (Tr4) ' ' '  (3.6) 

where the sum is over nontrivial partitions ~ of { 1 , 2 , . . . ,  k} and the sign 
depends on ~. For each ( x l , x  2 . . . . .  xk) E Gk,m, by choosing the particular 
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(W, W'} such that minie ,,j ~,~,,d(xi, xj) = m, and using Lemma 2, we obtain. 

I~(L(w~,) . . . . .  L(Wx~))l < C~3 " r k  " e ' B m / 4  (3.7) 

where c; is sup,maxwell,2 .. . . .  k/[1 + Ep2(~r)] k and F k is the number of 
partitions of { 1, 2 . . . . .  k}. 

Using (3.7) in (3.3) we obtain 

~k(Z.) < (VarS,(,)) -k/2 ~ E P(f.(W*l) . . . .  ,f~(Wx~)) 
m = 0 ( x l  . . . . .  xk) E Gk,r n ( ' f ( n ) )  

< o-*lg(n)l -*/2 ~ I'~(n)l(2m + ])k(k! )2C~3rke-Bm/4 
r n = O  

= la{(n)ll-k/20-%'3(k!)2Fk ~ (2m + 1)% /~-V4 
m = O  

--->0 

for k/> 3. 

4. PROOF OF THEOREM 1 

We will consider only the case p < 1/2, since for p > 1/2, 

Var~r(x ) = P( W x n 7 =/= O)P( Wx n 7 = O) 

> P(lWxl = +oo).(1 _p)4 
a bound which implies Theorem 2 applies. Throughout the remainder of 
this section we assume p < 1/2. We will first prove the variance estimates 
of (1.1), omitting the similar estimates on ESv. Since the F K G  inequality 
implies E ~ ( x ) ~ ( y ) -  E~v(x)E~v(y) > 0, 

VarSv = ~]o ~oE~v(x)~(y  ) - E~(x)E~v(y)  
x ~ 7  y ~ 7  

xEM, 

= y~ e ( w ~ n y - ~ o ) e ( w ~ n ~ , = o )  
x~a~ 

Since x E 3 ~ ,  P ( W x A T ~ O ) > p  and P ( W x A T = O ) ~ ( 1 - p )  4, and 
VarS~ > p( l  -p)4[a~ 1. To obtain an upper bound we introduce Ri(7) = (x 
~-~ld(x,O'~)_-- i} and ~ ( x ) =  1 --2 ~r(x). Note that E~v(x)~v(y)- E~v(x) 
E~(y)  = E~(x)~(y)  - E}v(x)E~(y). If we let/y = max{ i] Ri(7) v ~ D}, it 
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is clear that # < [0~,1. 
iy 

VarSr = E E ~] E ~ v ( x ) ~ , ( Y ) -  E~r(x)E~y(Y) 
i= 1 x~&(. D ye-~ 

i? 

= E E ~, E~(x)~(y)- e~v(x)E}r(y ) 
i=lx~&(y) ye~, 

d(x,y) < i 

iy 

+ E E E E~(x)~(y)- e~(x)e~(y) 
i=l x~Ri(y ) yC~ 

d(x,y) > i 

<~ 2 2 P(W~nr~o) 
i = 1  x~Ri(7) yC~, 

d(x,y) < i 

+ k E E C3 e-fid(x'y)/4 
i = l  x~Ri(',{ ) y ~ /  

d(x,y) > i 

using Lemma 2, which applies because gr(x)= 0 if I Wxl = + oc. We can 

the rather crude estimate IRi(7)l < 4~-i!0~,1, for i > 1, and Lemma n o w  u s e  

1 to bound the preceding terms by 

4~-IO')l i ( + 2 i +  1)2ae-fii + ~_~ ic3e ,Sd(O,y)/4 
i =  1 y ~ Z  2 

d(O,y) >>- i 

which proves (1.1). 
To prove Sv(n) is approximately normal we will use the method of 

Section 3 after we show that only the terms ~(n)(x) with x near &~(n) 
contribute significantly to Sy(,). To do this, define TK(Y) = {X ~ ~ I d(x, 
~-)) > K}, where K will be chosen later. The terms of Sv(.) which come 
from TK(7(n )) have variance 

Var( 
X ~ T K (T(rt)) 

= 2; E 
x E  TK(7(n)) y@ Tg(y(n))  

E~(~)(x)~(~)(y)- E~(~)(x)E~(,)(y) 

~] Z P(there exists z ~ W~,d(z ,x)  > K)  
x ~  TK(y(n)) y ~  TK(y(n)) 
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by Lemma 1. The additional crude estimates of [TK(2e(n)) I < I~(n)l 2 and 
I~(n)l = Y~=dR~(v(n))l < 4~-IO~(n)l 3, with the choice of K =  ]O'~(n)f 1/5, 
give 

Var( ~] ,v(.)(x)) --) 0 
x ~ TK (v(n)) 

v " 1/2 It suffices then to check k(~evc.)\v~(vc.))~c.)(x)/(VarSvr )-->0 for 
k >~ 3. As in Section 3 we bound ~k by 

(Vargv(.)) -~/z ~ 15"(n)\TK(y(n))l(2m + l)k(k! )2rkC3e-fim/4 
m=O 

< (p(1 - p)a)-k/=lO~(n)l-k/2]'~(n)\T~:(y(n)) I �9 csFk(k! )2 

~ (2m + 1)%-~m/4-90 
m = O  

for k >/3, since with K = 10p(n)l I/5, 

K ( 4 ~ - K ( K +  1) ) 
I'~(n)\TK(~'(n))] < ~, IRi(7(n))I < 10~(,)1 1 + 

i = 0  2 

= O(IO~(n)ll+2/5) �9 

5. ESTIMATES FOR THE SQUARES 

In this section 7(n) will be the boundary of the square [0, n] • [0, n], 
and we will write 5:. for Sv(.) and ~.(x) for ~v(.)(x). The constants in (1.3) 
and (1.4) are 

p ~  = P(I Wol -- + oo) 
c~ 

X = ~ P([ Wol < ~ and W o (q 11. ~ O) 
n = l  

A2 -- 2 e(I  Wol = I w~l -- + o~) - p ~  
y ~ Z 2  

A , = ~  ~ {P(WonH../=O and wsnHo=~O ) 
n = l  y ~ Z  2 

yl<n 

(5.1) 
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(0 ,n)  

(0, n-K) 

(0,K) 

(0,0Z 

Q8 

Q9 

Q2 

(K,0) 

Q7 Q6 

I 
Q1 Q5 

Q3 Q4 

(n-K,0) 

Fig. 1 

(n,n) 

(n,0) 

where H n = (x  E Z21x I = n}. The fact that A t and A 2 are finite follows 
from Lemmas 1 and 2. We will prove the estimates in (1.3) and omit the 
similar proof of (1.4). 

It is convenient to divide the square as follows (where K is a number to 
be chosen later) (Fig. 1): 

i.e., Q l = { x [ K < . x l < n - K , K < . x 2 < n - K } ,  Q2--(x]O<xI<K,O 
< x 2 < K }, Q3 = { x l K < xl < n - K, O < x 2 < K }, and so on. N o t e  that 
ESn = Z9=I~x~Q,P(Wx Cq "~ :/= 0). We start with Ql: 

~_, P( W x A y(n) r O) << nZow -~x (5.2) 
xEQI 

For 1 < i < K -  1 define l i = (x E Q21min(xl,x2) = i}. Then 

K - I  

~_a e ( W x N y ( n )  v~O)=  ~ ~ P ( W x n y ( n ) ~ Q )  
x ~ Q 2  i=1  x ~ l  i 

K - - I  

~] [lilP(there existsy E Wx,d(x,y)  > i) 
i=1  

oo 

<~ 2o~K ~ e -~' (5.3) 
i=1  
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using L e m m a  1. N o w  let I~ be the x axis and  for 1 < i < K -  1 define 
l* = (x ~ Q3[x2 = i}. Then 

K - - I  

P ( W ~ n y ( n ) ~ O ) =  ~ ~ { P ( W ~ n l ~ v ~ O )  
x ~ Q 3  i = l  x ~ l *  

+ P(W~ n t;' = o, w,  c~ v(~)  ~ o)}  

K 1 

= ~ (n + 1 - 2 K ) P ( W  0 ~ H~ :/: 0 )  (5.4) 
i = 1  

K - I  

+ Y, 2 P(W~n~( . )~o,w~nl~=o)  
i = 1  x E l *  

It  is not  difficult to show that  the first term above is (n - 1)X plus a term 
bounded  by 

2K2t + n ~ P ( W o A  Hi =/=0) << 2KX + n ~ ae -~i 
i = K  i = K  

= 2K?~ + nae- l~ / (1  - e -/~) 

The second term is bounded  by  

KnP(there exists x E W 0 with d(O,x) >1 K)  < Knae -/~K 

The terms in Q4 through Q9 are similar, and  therefore 

[ES. - 4(n - 1)?q < n2ae -~I( + 8aK ~ e-Pi + 8K?~ + 4nae ~ / ( 1  - e -/~) 
i = 1  

+ 4Knae -Bx 

The choice K =  2 / ~ - q n n  yields ES n = 4 ( n -  1)~ + O(lnn) .  We  turn now 
to the var iance est imate 

+ 
x E ~(n) y E ~(n) y e ~(n) 

d(x,y) < K d(x,y) > K 

= ~,, ~, (E} . (x l } . (y )  - E}~(x)E} . (y)  + O(rt4e-BK/4)) 
d(x,y) < K 

L e m m a  2 and  the fact that  ~v(n) can be replaced with _~(n)" We using n o w  

use the decomposi t ion  of ~,(n). 

~] ~ E~.(x)~.(y)  - E~.(x)E~.(y)  < n2(2K + 1)2ae -BK (5.5) 
x @ Q i  y E ~ ( n )  

d(x,y) ~; K 
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by Lemma 1. 

xEQ2 ye~(~) 
d(x,y) < K 

) - - E 2  2 + E 
i= 1 li y~ '~(n)  y~'~(n)  

d(x,y) < i i < d(x,y) < K 

�9 { E ( . ( x ) ~ . ( y )  - E~. (x)E~, , (y ) )  

< i~  2K { (2i + = ,  1)2 �9 2ae-~' + y e~( ~) c3e-~a(x'Y)/4''~ 

d(x,y) >~ i 

= O ( K )  (5.6) 

y, er162 er162 
x 6 Q 3  y E a ( n )  

d( x,y) < K 

= ~ 2 P(Wxnl~=/=O, Wyn l~r  
x E Q 3  y ~ ( n )  

d( x,y) < K 

- P ( W  x n l~ ~= O)P(Wy n l~ 4= 0) 

+ P, 2 (e(wxn-y(,,l=~e, 
x~Q3 y~y(n) 

d(x,y) 4 g 

w~nv(,,):~e,w~nl~'=o o~ w, nt~'=e) 

- e (Wx n l~ v= ra). p ( %  n lt~ = ~, wy n v(n) 4= 0)  

- P(  Wy r~ 7(n) =/= cO)e( Wx C3 l~ = O, W x n 7(n) vsO)} (5.7) 

Since P(W~ N l~ = 0, W:, c~ "I(n) ~ 0)  < P (there exists y ~ W:,,d(x, y)  >1 
K)  < ae -ilK, we have 

d(x,y) < K 

- ~ 2 ( l" (W~nt~o ,w~nzZ~o)  
x ~ Q 3  y ~ 7 ( n )  

d(x,y) << K 

< 4(2K + 1) 2. K .  nae -13K 
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Now we can rewrite 

x~Q3 y ~ / ( n )  
d(x,y) ~< K 

- P ( W  x (3 l~ ~ O)P(Wy :) l~ 40)  

= ~,, 2 P ( W x N I ~ O ,  W y A I ~ O )  
xEQ3 Y ~ 2  

y2>O 

- P(Wx n la ~ o)P(W~ n l~ ~ o) 

xeQ3 y ~ 2  
y2>O 

d(x,y) > K 

-P(Wx n l~ :/=O)P(Wy n l~ 4=0) 

The first term above is ( n -  l)A 1 - 2 ( K -  1)A I and it is not difficult to 
show that the second term is at most O(nKe-"~:/4). Considering the terms 
from Q4 to Q9 we have 

IVar&- 4 ( n -  l)All < O(n4e -BK/4) + 16n2(2K + l)2ae-BK+ O(K) 

+ 2 ( K -  1)A, + O(nKe -"'~/4) 

= O(ln n) 

for the choice K =  16f l -qnn .  �9 

NOTE ADDED IN PROOF 

We have learned that Gunnar  Branvall has independently obtained 
several central limit theorems similar to ours. He uses different techniques 
and works with circuits ,f(n) which are "regular." 
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